Recitation 4. October 1

Focus: bases, and the four fundamental subspaces.

A basis of a vector space V is a set of vectors v_{1}, \ldots, v_{n} that I) span and II) are linearly independent. The number of vectors in a basis (which is always the same) is the dimension of the vector space.

Let A be an $m \times n$ matrix. The four fundamental subspaces of A are: I) the nullspace $N(A) \subset \mathbb{R}^{n}$, II) the column space $C(A) \subset \mathbb{R}^{m}$, III) the row space $C\left(A^{T}\right) \subset \mathbb{R}^{n}$, and IV) the left nullspace $N\left(A^{T}\right) \subset \mathbb{R}^{m}$.

1. Determine if each of the following is a basis for the given vector space. If it is not, add or remove vectors to make it one:
(a) The set of vectors $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$ in \mathbb{R}^{3}.
(b) The set of vectors $\left[\begin{array}{l}2 \\ 4 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}6 \\ 0 \\ 0 \\ 0\end{array}\right]$ in \mathbb{R}^{4}
(c) The set of vectors $\left[\begin{array}{c}1 \\ -3 \\ 2\end{array}\right],\left[\begin{array}{c}-3 \\ 1 \\ 6\end{array}\right],\left[\begin{array}{l}4 \\ 2 \\ 5\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]$ in \mathbb{R}^{3}.

Solution: (a) These vectors do form a basis. The reduced row echelon form is the identity matrix. In particular, each row has a pivot, so these vectors span, and there are no columns without pivots so there are no linear dependencies.
(b) No these vectors do not form a basis: there are 3 and we know \mathbb{R}^{4} has dimension 4 . To complete the set to a basis, we may calculate as follows. Up to swapping columns, we can write these vectors as the column space of the matrix (in reduced row echelon form)

$$
\left[\begin{array}{ccc}
6 & 1 & 2 \\
0 & -1 & 4 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

from which we see that there are no linear dependencies and there are pivots in rows 1,3 , and 4 . Thus adding a column with a pivot in row 2 will make the column space all of \mathbb{R}^{4}. One choice is $v=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$.
(c) No these vectors do not form a basis: there are 4 of them and \mathbb{R}^{3} has dimension 3 . There must therefore be at least one linear dependence. To find it we use row elimination on the matrix whose columns are the above vectors. The row reduction is

$$
\left[\begin{array}{cccc}
1 & -3 & 4 & 2 \\
-3 & 1 & 2 & 1 \\
2 & 6 & 5 & 2
\end{array}\right] \xrightarrow{r_{2}+3 r_{1}, r_{3}-2 r_{2}}\left[\begin{array}{cccc}
1 & -3 & 4 & 2 \\
0 & -8 & 14 & 7 \\
0 & 12 & -3 & -2
\end{array}\right] \xrightarrow{r_{3}+\frac{3}{2} r_{2}}\left[\begin{array}{cccc}
1 & -3 & 4 & 2 \\
0 & -8 & 14 & 7 \\
0 & 0 & 18 & \frac{17}{2}
\end{array}\right]
$$

from which we see the last column is linearly dependent on the first three.
2. Recall that for two vector subspaces V, W in \mathbb{R}^{n}, their sum is $V+W=\{v+w \mid v \in V$ and $w \in W\}$, and their intersection is $V \cap W=\{v \mid v$ is in both $V, W\}$. Let

$$
\left.V=\operatorname{Span}\left\{\left[\begin{array}{c}
-1 \\
0 \\
1 \\
4
\end{array}\right],\left[\begin{array}{c}
2 \\
6 \\
0 \\
-3
\end{array}\right],\left[\begin{array}{c}
1 \\
12 \\
2 \\
0
\end{array}\right]\right\} \quad W=\operatorname{Span}\left\{\begin{array}{c}
0 \\
-3 \\
1 \\
-3
\end{array}\right],\left[\begin{array}{c}
-1 \\
6 \\
3 \\
9
\end{array}\right]\right\}
$$

Find a basis for $V+W$ and $V \cap W$.

Solution: By definition, the set of all 5 vectors is a spanning set for $V+W$. We can proceed by row reduction on the matrix whose columns are the above five vectors in order to find any linear dependencies. The row reduction proceeds as:

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
-1 & 2 & 1 & 0 & -1 \\
0 & 6 & 12 & -3 & 6 \\
1 & 0 & 2 & 1 & 3 \\
4 & -3 & 0 & -3 & 9
\end{array}\right] \xrightarrow{r_{3}+r_{1}, r_{4}+4 r_{1}}\left[\begin{array}{ccccc}
-1 & 2 & 1 & 0 & -1 \\
0 & 6 & 12 & -3 & 6 \\
0 & 2 & 3 & 1 & 2 \\
0 & 5 & 4 & -3 & 5
\end{array}\right] \xrightarrow{-r_{1}, \frac{1}{6} r_{2}}\left[\begin{array}{cccccc}
1 & -2 & -1 & 0 & 01 \\
0 & 1 & 2 & -\frac{1}{2} & 1 \\
0 & 2 & 3 & 1 & 2 \\
0 & 5 & 4 & -3 & 5
\end{array}\right]} \\
& \xrightarrow{r_{3}-2 r_{2}, r_{4}-5 r_{2}}\left[\begin{array}{ccccc}
1 & -2 & -1 & 0 & 1 \\
0 & 1 & 2 & -\frac{1}{2} & 1 \\
0 & 0 & -1 & 2 & 0 \\
0 & 0 & -6 & -\frac{1}{2} & 0
\end{array}\right] \xrightarrow{-r_{3}, r_{4}+6 r_{3}}\left[\begin{array}{ccccc}
1 & -2 & -1 & 0 & 1 \\
0 & 1 & 2 & -\frac{1}{2} & 1 \\
0 & 0 & 1 & -2 & 0 \\
0 & 0 & 0 & -\frac{25}{2} & 0
\end{array}\right]
\end{aligned}
$$

from which we see there is exactly one linear dependence: the fifth vector is a linear combination of the first two. From this we conclude the first four vectors form a basis of $V+W$, and the fifth vector is a basis for $V \cap W$ (since it is the only column that lies in both).
3. Use Gauss-Jordan elimination find a basis of each of the four fundamental subspaces of

$$
A=\left[\begin{array}{cccc}
1 & -3 & -1 & 2 \\
2 & -5 & 2 & 5 \\
-3 & 9 & 4 & -3
\end{array}\right]
$$

What is the dimension of each?

Solution: The reduced row echelon form is

$$
\left[\begin{array}{cccc}
1 & -3 & -1 & 2 \\
2 & -5 & 2 & 5 \\
-3 & 9 & 4 & -3
\end{array}\right] \xrightarrow{r_{2}-2 \xrightarrow{r_{1}, r_{3}}+3 r_{1}}\left[\begin{array}{cccc}
1 & -3 & -1 & 2 \\
0 & 1 & 4 & 1 \\
0 & 0 & 1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & -28 \\
0 & 1 & 0 & -11 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

From this we can see
I) There are three pivots in the first three columns, so the column space has dimension three and a basis for it is

$$
\left[\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right],\left[\begin{array}{c}
-3 \\
-5 \\
9
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
4
\end{array}\right]
$$

II) The nullspace is one dimensional (the above shows the rank is $r=3$ and $\operatorname{dim} N(A)+r=4$). It is spanned by

$$
\left[\begin{array}{c}
28 \\
11 \\
-3 \\
1
\end{array}\right]
$$

III) There are no linear dependencies among the rows, therefore the row space has dimension 3 and is spanned by

$$
\left[\begin{array}{c}
1 \\
-3 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{c}
2 \\
-5 \\
2 \\
5
\end{array}\right],\left[\begin{array}{c}
-3 \\
9 \\
4 \\
-3
\end{array}\right]
$$

IV) The left nullspace has dimension $m-r=3-3=0$. It has basis the empty set of vectors.
4. Let B be a square matrix such that $B^{T}=B^{-1}$. Show that the columns of B are (pairwise) orthogonal and have length 1. A matrix with this property is said to be orthogonal.

Solution: If we label the columns of B by $\mathbf{c}_{\mathbf{1}}, \ldots \mathbf{c}_{\mathbf{n}}$ we can write

$$
B=\left[\begin{array}{llll}
& & & \\
\mathbf{c}_{1} & \mathbf{c}_{2} & \ldots & \mathbf{c}_{\mathbf{n}}
\end{array}\right] \quad B^{T}=\left[\begin{array}{c}
\mathbf{c}_{\mathbf{1}} \\
\mathbf{c}_{\mathbf{2}} \\
\vdots \\
\mathbf{c}_{\mathbf{n}}
\end{array}\right]
$$

and

$$
\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right]=I=B^{-1} B=B^{T} B=\left[\begin{array}{cccc}
\mathbf{c}_{\mathbf{1}} \cdot \mathbf{c}_{\mathbf{1}} & \mathbf{c}_{\mathbf{1}} \cdot \mathbf{c}_{\mathbf{2}} & \ldots & \mathbf{c}_{\mathbf{1}} \cdot \mathbf{c}_{\mathbf{n}} \\
\mathbf{c}_{\mathbf{2}} \cdot \mathbf{c}_{\mathbf{1}} & \mathbf{c}_{2} \cdot \mathbf{c}_{2} & \ldots & \mathbf{c}_{2} \cdot \mathbf{c}_{\mathbf{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{c}_{\mathbf{n}} \cdot \mathbf{c}_{\mathbf{1}} & \mathbf{c}_{\mathbf{n}} \cdot \mathbf{c}_{\mathbf{2}} & \ldots & \mathbf{c}_{\mathbf{n}} \cdot \mathbf{c}_{\mathbf{n}}
\end{array}\right] .
$$

From which we see

$$
\mathbf{c}_{\mathbf{i}} \cdot \mathbf{c}_{\mathbf{j}}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

which shows that the columns are pairwise orthogonal, and each has length $\left\|\mathbf{c}_{\mathbf{i}}\right\|=\sqrt{\mathbf{c}_{\mathbf{i}} \cdot \mathbf{c}_{\mathbf{i}}}=\mathbf{1}$.

